Get 65% Discount on Preventive Health Checkup
Career in India        

AICEE - Physics syllabus


The syllabus in Physics aims at providing the learners with sufficient conceptual background which would eventually make them competent to meet the challenges of academic as well as professional courses during their corresponding courses after AICEE. Some of the salient features of the updated syllabus are :

  • Emphasis on basic conceptual understanding of the content.
  • Promoting process-skills, problems-solving abilities and applications of basic concepts in real life situations.
  • Emphasis on use of SI units, symbols and formulations as per international standards.
  • Emphasis on Physics-related technological/industrial aspects to meet the changing demand of society.
  • Providing logical sequences of the units of subject matter and proper placement of concepts.
  • Emphasis on inclusion of indigenous knowledge and Indian contribution to Physics and technology.
  • Reducing curriculum load by eliminating overlapping of concepts/content within the discipline.
  • Inclusion of emerging areas such as principals of communication and space/satellite communication.

Physical World and Measurement
Physics-scope and excitement; Physics, technology and society. Forces in nature, conservation laws; Examples of gravitational, electromagnetic and nuclear forces from daily-life experiences (qualitative description only) Need for measurement; Units of measurement; Systems of units; SI units, Fundamental and derived units, Length, mass and time measurements; Accuracy and precision of measuring instruments, Errors in measurement; Significant figures. Dimensions of physical quantities, dimensional analysis and its applications.

Motion in a straight line, Position-time graph, speed and velocity, Uniform and non-uniform motion, average speed and instantaneous velocity. Uniformly accelerated motion, velocity-time, position-time graphs, relations for uniformly accelerated motion (graphical treatment). Elementary concepts of differentiation and integration for describing motion. Scalar and vector quantities; Position and displacement vectors, general vectors and notation; Equality of vectors, multiplication of vectors by a real number; Addition and substraction of vectors; Unit vector, Resolution of a vector in a plane-Rectangular components, Multiplication of vectors-scalar and vector products; vectors in three dimensions (elementary idea only). Motion in a plane, Cases of uniform velocity and uniform acceleration - Projectile motion, Uniform circular motion.

Laws of Motion
Force and inertia, Newton’s first law of motion; Momentum, Newton’s second law of motion, Impulse; Newton’s third law of motion; Law of conservation of linear momentum and its applications; Equilibrium of concurrent forces; Static and Kinetic friction, laws of friction, rolling friction, lubrication; Examples of variable-mass situation. Dynamics of uniform circular motion; Centripetal force, examples of circular motion (vehicle on level circular road, vehicle on banked road); Inertial and non-inertial frames (elementary idea).

Work, Energy and Power
Work done by a constant force and a variable force; Kinetic energy, Power; Work-energy theorem. Notion of Potential energy, potential energy of a spring, conservative forces; conservation of mechanical energy (Kinetic and potential energies), Non-conservative forces; elastic and inelastic collisions in one and two dimensions. Different forms of energies in nature, Mass-energy equivalence (qualitative idea only).

Motion of System of Particles and Rigid Body
Centre of mass of a two-particle system, generalisation to N particles, momentum conservation and centre of mass motion, Application to some familiar systems; centre of mass of a rigid body. Moment of a force, Torque, angular momentum, physical meaning of angular momentum, conservation of angular momentum with some examples (Planetary motion). Equilibrium of rigid bodies, rigid body rotation and equation of rotational motion, comparison of linear and rotational motions; Moment of inertia and its physical significance, radius of gyration, parallel and perpendicular axes theorems (statements without proofs); Moment of inertia of circular ring, disc, cylinder without slipping. Examples of Binary system in nature (Binary Stars, Earth-moon system, diatomic molecules).

The universal law of gravitation, Gravitational constant; Acceleration due to gravity and its variation with the altitude, latitude, depth and rotation of the earth; Mass of the earth. Gravitational potential energy near the surface of the earth, gravitational potential; Escape velocity, orbital velocity of satellite, Weightlessness, motion of satellite, geostationary and polar satellites; Statement of Kepler’s law of planetary motion; proof of second and third law (circular orbits); Inertial and Gravitational mass.

Mechanics of Solids and Fluids
States of matter, Inter-atomic and inter-molecular forces. A. Solids : Elastic behaviour, Stress-Strain relationship, Hooke’s law, Young’s modulus, bulk modulus, shear, modulus of rigidity, some practical examples. B. Fluids : Pressure due to fluid column, Pascal’s law and its applications (hydraulic lift and hydraulic brakes), Effect of gravity on fluid pressure, Buoyancy, floatation and Archimedes’ principle; Viscosity, Strokes’ law, Terminal velocity, Streamline flow, Reynold’s number, Bernoulli’s theorem and its applications. Surface energy and surface tension, angle of contact, applications of surface tension ideas in (i) formation of drops and bubbles, (ii) capillary rise.

Heat and Thermodynamics
Kinetic theory of gases - assumptions, concept of pressure, Kinetic energy and temperature; mean, rms and most probable speed, degrees of freedom, law of equipartition of energy (statement only), concept of mean free path, Avogadro’s number. Thermal equilibrium and temperature (zeroth law of thermodynamics), Heat, work and internal energy; Thermal expansion-thermometry; First law of thermodynamics, specific heat, specific heat of gases as constant volume and pressure (monoatomic, diatomic gases); specific heat of solids (Dulong and Petit’s law). Thermodynamical variables and equation of state, phase diagrams; ideal gas equation, isothermal and adiabatic processes; reversible and irreversible processes; Carnot engine and refrigerator or heat pump. Efficiency and coefficient of performance of heat engines; second law of thermodynamics (statement only) and some practical applications. Transfer of heat - conduction, convection and radiation; Thermal conductivity of solids; Black body radiation - Kirchhoff’s law, Wien’s displacement law, Stefan’s law (statements only); Newton’s law of cooling; solar constant and surface temperature of the sun.

Periodic motion - period, frequency, displacement as a function of time and periodic functions, Simple harmonic motion (S.H.M.) and its equation; Phase, uniform circular motion and simple harmonic motion; oscillations of a spring-restoring force and force constant; Energy in S.H.M. - Kinetic and potential energies; Simple pendulum-derivation of expression for its time period; Free, forced and damped oscillations (qualitative ideas only), resonance; coupled oscillations.

Longitudinal and transverse waves, wave motion, speed of wave motion, Displacement relation for a progressive wave; Principle of superposition of waves, Reflections of waves, Reflection of waves, standing waves in strings and pipes, fundamental mode and harmonics, Beats, Doppler effect.

Frictional electricity, charges and their conservation; Coulomb’s law - Forces between two point electric charges, Forces between multiple electric charges; Superposition principle and continuous charge distribution. Electric field and its physical significance, electric field due to a point charge, electric field lines; Electric dipole, electric field due to a dipole and behaviour of dipole in a uniform electric field. Electric potential-physical meaning, potential difference, electric potential due to a point charge, a dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges and of electric dipoles in an electrostatic field. Electric flux, statement of Gauss’s theorem and its applications to find field due to infinitely long straight wire, uniformly charged inifinite plane sheet and uniformly charged thin spherical shell. Conductors and insulators, presence of free charges and bound charges inside a conductor; Dielectrics and electric polarisation, general concept of a capacitor and expacitance, combination of capacitors in series and in parallel, energy stored in a capacitor, capacitance of a parallel plate capacitor with and without dielectric medium between the plates; Van de Graff generator.

Current Electricity
Electric current, flow of electric charges in a metallic conductor, drift velocity and mobility, and their relation with electric current; Ohm’s law, electrical resistance, V-I characteristics, Exceptions of Ohm’s law (Non-linear V-I characteristics), electrical resistivity and conductivity, classification of materials in terms of conductivity; Superconductivity (elementary idea); Carbon resistors, colour code for carbon resistors; combination of resistances - series and parallel. Temperature dependence of resistance. Internal resistance of a cell, Potential difference and emf of a cell, combination of cells in series and in parallel. Kirchoff’s laws - illustration by simple applications, Wheatstone bridge and its applications for temperature measurements, Metre bridge - special case of wheatstone bridge. Potentiometer - principle and applications to measure potential difference, and for comparing emf of two cells. Electric power, thermal effects of current and Joule’s law; Chemical effects of current-Faraday’s laws of electrolysis; Electro-chemical cells - Primary and secondary cells, solid states cells. Thermoelectricity - origin, elementary ideas of Seebeck effect, Thermocouple, Thermo emf, neutral and inversion temperatures. Measurement of temperature using a thermo couple.

Magnetic Effect of Current and Magnetism
Concept of magnetic field, Oersted’s experiment, Biot-Savart law, magnetic field due to an infinitely long current carrying straight wire and a circular loop; Ampere’s circuit law and its applications to straight and toroidal solenoids; Force on a moving charge in uniform magnetic and electric fields, Cyclotron; Force on current - carrying conductor in a uniform magnetic field. Forces between two parallel current-carrying conductors-definition of ampere; Torque experienced by a current loop in a uniform magnetic field, moving coil galvanometer - its current sensitivity and conversion to ammeter and voltmeter.

Current loop as a magnetic dipole and its magnetic dipole moment; Magnetic dipole moment of a revolving electron; Magnetic field intensity due to magnetic dipole (bar magnet) along the axis and perpendicular to the axis; Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; Bar magnet as an equivalent solenoid, Magnetic field lines; Earth’s magnetic field and magnetic elements; Para-dia and ferro-magnetic substances with examples, Electromagnets and permanent magnets.

Electromagnetic Induction and Alternating Current
Electromagnetic induction, Faraday’s laws, Induced emf and current, Lenz’s law, Eddy currents, self and mutual inductance. Alternating current, peak and rms value of alternating current/voltage, reactance and impedance; LC oscillations, LCR series circuit (Phasor diagram) - Resonant circuits and Q-factor; Power in AC circuits, wattless current. AC generator and Transformer.

Electromagnetic Waves
Electromagnetic waves and their characteristics (qualitative ideas only); Transverse nature of electromagnetic waves. Electromagnetic spectrum (Radio-microwaves, infra-red, optical, ultraviolet, X-rays, gamma rays) including elementary facts about their uses; Propagation of electromagnetic waves in atmosphere.

Refraction of light, total internal reflection and its applications, spherical lenses, thin lens formula, lens maker’s formula; Magnification, Power of a lens, combination of thin lenses in contact; Refraction and dispersion of light due to a prism, Scattering of light - Blue colour of the sky and reddish appearance of the sun at sun-rise and sun-set. Optical instruments - Compound microscope, astronomical telescope (refraction and reflection type) and their magnifying powers. Wave front and Huygen’s principles; Reflection and refraction of plane wave at a plane surface using wave fronts (qualitative idea); Interference - Young’s double slit experiment and expression for fringe width, coherent sources and sustained interference of light; Diffraction - diffraction due to a single slit, width of central maximum, difference between interference and diffraction; Resolving power of microscope and telescope; Polarisation, Plane polarised light, Brewster’s law; Use of plane polarised light and polaroids

Dual Nature of Matter and Radiations
Photo-electric effect, Einstein Photo-electric equation - particle nature of light, photo-cell, Matter waves - wave nature of particles, De-Broglie relation, Davison and Germer experiment.

Atomic Nucleus
Alpha-particle scattering experiment, size of the nucleus, composition of the nucleus - protons and neutrons. Nuclear instability - Radioactivity - Alpha, Beta and Gamma particles/rays and their properties, radioactive decay law, simple explanation of a-decay, b-decay and g-decay. Mass-energy relation, mass defect, Binding Energy per nucleon, its variation with mass number, Nature of nuclear forces, nuclear reaction - Nuclear fission and Nuclear fusion.

Solids and Semi-Conductor Devices
Energy bands in solids (qualitative ideas only), difference between metals, insulators and semiconductors using band theory; Intrinsic and extrinsic semi-conductors, p-n junction, Semiconductor diode - characteristics in forward and reverse bias, diode as a rectifier, solar cell, photo-diode, LED, zener diode as a voltage regulator; Junction transistor, transistor action, characteristics of a transistor; Transistor as an amplifier (common emitter configuration) and oscillator; Logic gates (OR, AND, NOT, NAND and NOR); Elementary ideas about I.C.

Principles of Communication
Elementary idea of analog and digital communication; Need for modulation; Modulation - amplitude, frequency and pulse modulation; Elementary idea about demodulation, Data transmission and retrieval - Fax and Modem.

Space Communication :
Propagation of E.M. waves in atmosphere. Sky and space wave propagation. Satellite communication. Applications in Remote Sensing. Line Communication : 2-wire lines, cables, telephone links; optical communication (optical fibre, Lasers), elementary principle of light modulation.

Career in India | Jobs in India
© All Rights Reserved, | partners | Sitemap